
Installing Akkoma

This page makes the following assumptions:

You have a running VPS, prepared according to the instructions in Preparing Your VPS.
You have a domain name that's pointed to your VPS.

If either of these aren't true, please read through the last three pages.

We're now going to download, install, and configure Akkoma, as well as some dependencies and a
few other services we'll need to make this work: specifically, Caddy and PostgreSQL.

PostgreSQL is used to store information, such as account details, user posts, and the like. Caddy is
something called a "reverse proxy" - think of it like opening a portal from the outside world into a
specific application within your VPS. Caddy also does some other heavy lifting for us, such as
getting SSL certificates (which allow folks and other servers to securely connect to your instance).

Installing Dependencies
We have a few things we need to install - namely, PostgreSQL, Caddy, and a handful of
dependencies - some required to build and run Akkoma, and a few required to enable useful
features:

Before we continue, let's create the Akkoma system user - we'll need it eventually, but we may
need it very soon:

This install can get a little messy, and this guide should still be considered in a "beta" state.
There have been some confusion from people testing this on their system. Take it slow and
carefully, and ask for help if you need it.

We are doing this install from source. Installing from OTP as broken, as a necessary
dependency has been removed from Ubuntu 24.04. This guide is based off of, and uses
much of the same commands as, the upstream documentation: Installing on Debian Based
Distributions

sudo apt install git build-essential postgresql postgresql-contrib cmake libmagic-dev elixir erlang-dev erlang-nox
imagemagick ffmpeg libimage-exiftool-perl caddy

https://information.websiteleague.org/books/akkoma-setup-guide/page/preparing-your-vps
https://docs.akkoma.dev/stable/installation/debian_based_en/
https://docs.akkoma.dev/stable/installation/debian_based_en/

Run the following command, and ensure you have at least OTP 25 and Elixir 1.14:

If you at least meet those versions, skip directly to Tuning Postgres. If not, uninstall Elixir and
Erlang, then proceed with the next section, Installing asdf:

Installing Elixir and Erlang with asdf
asdf is an application that effectively manages versions of different applications available to a
given project. We will be using it to install a recent version of Erlang and Elixir.

You're first going to need a few more dependencies:

Next, let's change to the akkoma user, then download asdf.

Next, we'll add a few lines to the end of .bashrc, and then restart your akkoma shell.

Let's start compiling and installing Erlang, and then installing Elixir. Compiling Erlang will take a
few moments!

sudo useradd -r -s /bin/false -m -d /var/lib/akkoma -U akkoma

elixir --version

sudo apt remove elixir erlang-dev erlang-nox
sudo apt autoremove

sudo apt install -y curl unzip build-essential autoconf m4 libncurses5-dev libssh-dev unixodbc-dev xsltproc
libxml2-utils libncurses-dev

sudo su -l akkoma -s $SHELL
git clone https://github.com/asdf-vm/asdf.git /var/lib/akkoma/.asdf --branch v0.11.3

From now until Tuning Postgres, you will run all of these commands as the akkoma user.

cat <<EOT >> ~/.bashrc
. "$HOME/.asdf/asdf.sh"
asdf completions
. "$HOME/.asdf/completions/asdf.bash"
EOT
exec $SHELL

Finally, check the elixir version once again, to make sure you now have the right version:

If it is indeed correct, go ahead and exit your akkoma shell back into root.

Tuning Postgres
We're going to take a slight detour from the install documentation to tune PostgreSQL a little bit.
This will help tweak the performance to work better with our kind of setup - including the fact we
are on an SSD and can use SSD speeds.

Open postgresql.conf in nano:

Find the following settings in the file, and change them to read the following (including un-
commenting them if they're commented out):

asdf plugin add erlang https://github.com/asdf-vm/asdf-erlang.git
export KERL_CONFIGURE_OPTIONS="--disable-debug --without-javac"
asdf install erlang 25.3.2.5
asdf global erlang 25.3.2.5

asdf plugin-add elixir https://github.com/asdf-vm/asdf-elixir.git
asdf install elixir 1.15.4-otp-25
asdf global elixir 1.15.4-otp-25

elixir --version

exit

The following tune was created using PGTune, and was created assuming a VPS with 4 GB of
memory and 2 CPU cores (and I told the tune to only use 3 GB of memory.) If your specs are
different, you may want to create your own tune. If you create your own tune, I also selected
"Web Application" for database type, 100 max connections, and SSD storage.

sudo nano /etc/postgresql/16/main/postgresql.conf

max_connections = 20
shared_buffers = 768MB
effective_cache_size = 2304MB
maintenance_work_mem = 192MB
checkpoint_completion_target = 0.9
wal_buffers = 16MB

https://pgtune.leopard.in.ua/

Then, enable and restart postgresql:

Installing and Configuring Akkoma
Make the directory Akkoma's gonna live in, then clone the stable version of the Website League
fork:

Switch to a shell as the Akkoma user, go into the Akkoma directory, and install dependencies.

If it asks you to install Hex, answer Yes.

default_statistics_target = 100
random_page_cost = 1.1
effective_io_concurrency = 200
work_mem = 19660kB
huge_pages = off
min_wal_size = 1GB
max_wal_size = 4GB

You can press Ctrl+W in Nano to run a search.

sudo systemctl enable postgresql
sudo systemctl restart postgresql

sudo mkdir -p /opt/akkoma
sudo chown -R akkoma:akkoma /opt/akkoma
sudo -Hu akkoma git clone https://gitlab.com/website-league/akkoma/akkoma.git -b wl-stable /opt/akkoma

sudo su -l akkoma -s $SHELL
cd /opt/akkoma
MIX_ENV=prod mix deps.get

From now until further notice, you will be running these commands as the akkoma user. If
you didn't need to use asdf, you may be able to run these using sudo -Hu akkoma instead.
(The author of this guide ran into problems trying to use sudo with asdf.)

For any mix command you run, you will want to add MIX_ENV=prod before the beginning
of it. This tells Akkoma to use the production configuration and not the development
configuration. If you don't add this, it may use the wrong configuration, which can cause a
lot of confusion!

Run this command to begin configuring your instance (after it compiles a bunch of dependencies):

If it asks you to install rebar3, say yes.

Use the domain you set the A and AAAA records earlier for as your instance domain.

Use the domain you set the CNAME record earlier for as part of your media base URL:

Use the defaults for anything database related (hostname, username, database name, password) -
the configuration guide will effectively generate a script to create that database, user, and
password on Postgres for you.

When asked about if you want to store your config in the database, say yes.

Once done, it will create a few config files for you, as well as a robots.txt and a postgres setup
script.

Rename the generated config so Akkoma will use it, then temporarily leave the Akkoma shell so
you can then set up the database:

Once back in the akkoma shell, in the /opt/akkoma/ directory, run database migrations real quick.

One more thing - we're going to make a quick edit to our generated config file:

MIX_ENV=prod mix pleroma.instance gen

https://media.awesome.instance/media

You can answer no to this - there are folks who prefer modifying their setup from only the
config file (as the config would be one source of truth) - but this does come with major
inconveniences (such as Akkoma recompiling with every config change.) You can change
your mind on this down the line if you need to.

exit
sudo -Hu akkoma mv /opt/akkoma/config/{generated_config.exs,prod.secret.exs}
sudo -Hu postgres psql -f /opt/akkoma/config/setup_db.psql
sudo su -l akkoma -s $SHELL
cd /opt/akkoma/

MIX_ENV=prod mix ecto.migrate

nano config/prod.secret.exs

Since we're using a version of Postgres later than 12, we can tell Akkoma to run more efficient
queries by adding this bit of config under config :pleroma, Pleroma.Repo:

Save, then exit the Akkoma user console again.

We're getting close to finishing! Now we just need to set up the reverse proxy, Caddy, as well as
the service for Akkoma!

Configuring Caddy
Assuming this is a brand new instance with an unconfigured install of Caddy, replace the current
Caddy config file with the one from Akkoma, then open it up in an editor:

Replace example.tld with your instance domain. Then, uncomment every line starting from
media.example.tld, and replace media.example.tld with your media instance domain (the one you
set the CNAME for.) Then add the following three lines to the top of the first section in curly braces:

The start of your Caddyfile should look something like this:

config :pleroma, Pleroma.Repo,
 prepare: :named,
 parameters: [
 plan_cache_mode: "force_custom_plan"
],
 <rest of the Pleroma.Repo config here>

exit

 sudo rm /etc/caddy/Caddyfile
 sudo cp /opt/akkoma/installation/caddy/Caddyfile /etc/caddy/Caddyfile
 sudo nano /etc/caddy/Caddyfile

 # block freespeechextremists
 @blocked header_regexp User-Agent FediList*
 abort @blocked

your.cool.instance {
 # block freespeechextremists
 @blocked header_regexp User-Agent FediList*
 abort @blocked

 log {

Enable and restart Caddy.

Test that blocking the freespeechextremists crawler worked by replacing example.tld with your
domain instance.

The result should be:

Configuring and Starting the Akkoma Service
Copy the systemd service file over from Akkoma's install directory, then open it with a text editor.

Double-check everything in the service file looks correct. Once you're sure, save and exit.

 output file /var/log/caddy/akkoma.log
 }

 (...rest of the file here...)

sudo systemctl enable caddy
sudo systemctl restart caddy

curl -A "FediList Agent/2 (https://fedilist.com/)" https://example.tld

curl: (92) HTTP/2 stream 1 was not closed cleanly: INTERNAL_ERROR (err 2)

sudo cp /opt/akkoma/installation/akkoma.service /etc/systemd/system/akkoma.service
sudo nano /etc/systemd/system/akkoma.service

If you used asdf to install Elixir and Erlang earlier, follow the comments throughout
the service file:

; Uncomment if using asdf to manage Elixir and Erlang
Environment="PATH=/var/lib/akkoma/.asdf/shims:/var/lib/akkoma/.asdf/bin:/usr/local/sbin:/usr/local/bin:/usr/sbin:
/usr/bin:/sbin:/bin"

(...no changes to the config until a bit later in the file...)

; ExecStart=/usr/bin/mix phx.server
; If using asdf comment the above line and uncomment the one below instead
ExecStart=/var/lib/akkoma/.asdf/shims/mix phx.server

Reload systemctl config (just in case), then... it's time to enable and start your Akkoma instance:

Make sure it doesn't crash - you can also check its progress with the command:

You might get an error about tzdata - this should be OK. You should see something like the
following in the logs at some point:

If you get there, try browsing to your instance and see what happens!

...Ah, right, we need to install a frontend. And create your user account, that too.

Create a User and Install a Frontend
We'll need to log back into the Akkoma user again and go back to the install directory:

sudo systemctl daemon-reload
sudo systemctl enable --now akkoma.service

sudo journalctl -feu akkoma

Sep 28 05:02:57 tingus.raccoons.today mix[36029]: 05:02:57.931 [info] Running Pleroma.Web.Endpoint with
cowboy 2.12.0 at 127.0.0.1:4000 (http)
Sep 28 05:02:57 tingus.raccoons.today mix[36029]: 05:02:57.932 [info] Access Pleroma.Web.Endpoint at
https://tingus.raccoons.today

https://information.websiteleague.org/uploads/images/gallery/2024-09/DsIXJJEOFRAFXug2-screenshot-2024-09-28-010756.png

Then, run this command to create a user, replacing <username> with your desired username and
<your@emailaddress> with your E-mail address:

It'll give you a reset password URL - go to that page in your browser to set your password.

and just run these commands to install the Website League fork of the main frontend, as well as
the admin frontend (if you enabled database configuration):

Now try browsing to your instance!

sudo su -l akkoma -s $SHELL
cd /opt/akkoma/

If you changed your config earlier to require E-mail confirmation, you'll likely want to disable
that now, before creating your account, just in case it's not working - it doesn't appear like
you can confirm E-mails via the console.

MIX_ENV=prod mix pleroma.user new <username> <your@emailaddress> --admin

MIX_ENV=prod mix pleroma.frontend install pleroma-fe --ref stable --build-url
https://git.tenna.zip/Tenna/akkoma-fe/releases/download/10102024-2/akkoma-fe.zip
MIX_ENV=prod mix pleroma.frontend install admin-fe --ref stable

Now that's more like it! Also, make sure you can upload images as well, just to make sure your
media domain is working properly.

...And we should probably make a few config changes real quick, since right now your instance is
technically running on open, blocklist federation. We don't want that.

Switching to Allowlist Federation, Adding Domains, and
Other Config

As of the time of writing this guide, there is not an automated procedure to add domains to
the allowlist. One will be made in the future - in the interim, this guide will include steps on
how to configure it and add domains manually.

Note that, even after adding all the domains to the allowlist, if you just started your instance
(and haven't pre-emptively had your instance added to the Website League node list), it's
likely other instances haven't added your domain to their allowlist yet, and so looking up
their information will fail until they update their allowlists.

https://information.websiteleague.org/uploads/images/gallery/2024-09/f8oEdmZ5T3iyu9N4-screenshot-2024-09-28-012512.png

Click on the little speedometer icon on the top right of the screen, or go to https://<your-instance-
domain>/pleroma/admin/.

Once in the admin control panel, go to Settings, then MRF. Under Policies, add "SimplePolicy" and
"FollowAllowlistPolicy", and then disable MRF transparency:

Then, scroll down to the MRF Simple section, then under Accept, add each Website League domain,
and put whatever you'd like under Reason (for your records):

Also scroll down to the MRF Follow Allowlist section and set the values as follows:

https://information.websiteleague.org/uploads/images/gallery/2024-10/WEDmJvynb1aXgL1m-image.png
https://information.websiteleague.org/uploads/images/gallery/2024-09/eQdGV1s1D2ThBcNX-screenshot-2024-09-28-013319.png

Hit Submit, and you're good to go - by adding domains to the Accept list, your instance has
automatically switched to allowlist federation, and the follow allowlist will restrict access to the
relay account we're about to enable (we don't want normal users to be able to follow it because the
relay accounts can be used to approximate a federated timeline).

Additionally, change the following settings:

ActivityPub > Enable "Authorized Fetch mode"
This sets Akkoma up so that instances have to sign their requests to receive data.
Important to avoid leaks.

Frontend > Enable "Hide post stats" and "Hide user stats"
No numbers, please.

Instance > Disable "Federated timeline available"
No federated timeline.

Instance > Enable "Allow Relay"
This will allow allowlisted instances (just the Website League!) to get all public posts
on your instance, which improves federation a lot. This will also enable a system
relay account (the one we've just secured with the follow allowlist policy) that
instances without native relay support can use to receive activities.

Relays
This is a list of relays that your instance will fetch posts from. Put Website League
Akkoma instances' URLs here, with /relay appended. For example, the relay for
https://league.example.tld will be "https://league.example.tld/relay". This allows your
instance to see more posts across the League, which makes tags work a lot better.
Only put Website League URLs here.

Other Config to Set
Take a look through all the settings - there's a few things you may want to change or tweak:

ActivityPub > Outgoing Blocks: Enable
This should be fine to enable in the Website League, as nodes are vetted and nobody
should be installing anything that would abuse this to notify users if they have been
blocked.

Anything in Frontend
It's your node - feel free to customize it!

Anything in Instance

https://information.websiteleague.org/uploads/images/gallery/2024-10/yqSanmgMmMXOb4lh-image.png

Change the description, bump up the limit to something nice (50k seems fine)
Specific items in Instance:

Registrations Open: Disable this if you're invite only or a single user node.
Account approval required: You must enable this if your registrations are open.
Invites Enabled: Enable if you want to enable invites.
Account activation required: Enable this if you want folks to validate their E-
mails and you can confirm Akkoma successfully sends E-mails.
Public: Disable if you wish to limit access from unauthenticated folks seeing stuff
from your instance.

Anything in Mailer if you want to send E-mails
Other > Terms of Service

Put together a terms of service for your node specifically if you'd like!

Make sure to save your settings once you're done changing them!

You can change the favicon by placing favicon.png in /opt/akkoma/instance/static

Manual Config Changes
If you're not using the database config, below is the equivalent changes as to what were applied
above that are necessary (still refer to the documentation for more):

config :pleroma, :mrf,
 policies: [
 Pleroma.Web.ActivityPub.MRF.ObjectAgePolicy,
 Pleroma.Web.ActivityPub.MRF.TagPolicy,
 Pleroma.Web.ActivityPub.MRF.SimplePolicy
],
 transparency: false

config :pleroma, :mrf_simple,
 accept: [
 {"website-league-node.here", "Website League node"},
 {"another-website-league-node.here", "Website League node"},
 {"yet-another-node.here", "Website League node"},
 # just keep adding a line like the 3 above for each node you want to add
 {"secret-fourth.node", "Website League Node"}
 # and the last one has no comma at the end
]

config :pleroma, :activitypub, outgoing_blocks: true, authorized_fetch_mode: true

config :pleroma, :instance,

Additionally, regardless of whether you use database config or not, add the following if you wish to
disable the local timeline:

For all other changes, the upstream configuration is a good (albeit not entirely exhaustive) source
to find what everything does: Configuration Cheatsheet

 federated_timeline_available: false

config :pleroma, :frontend_configurations,
 pleroma_fe: %{
 hidePostStats: true,
 hideUserStats: true,
 redirectRootNoLogin: "/about"
 }

config :pleroma, :instance,
 local_timeline_available: false

config :pleroma, :frontend_configurations,
 pleroma_fe: %{ redirectRootNoLogin: "/about" }

And with that, you should be done! If you're still here, thank you very much for following
through, and congrats on your new instance! I hope this guide helped! If you have any
problems or any questions, folks in the Discord should be able to help - the author of this
guide included, Tenna Lotor. Best of luck to you, and welcome to the Website League!

Revision #37
Created 28 September 2024 01:24:27 by Tenna Lotor
Updated 31 October 2024 18:57:19 by Tenna Lotor

https://docs.akkoma.dev/stable/configuration/cheatsheet/

